Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(11)2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34831225

RESUMO

Understanding seizure development requires an integrated knowledge of different scales of organization of epileptic networks. We developed a model of "epilepsy-in-a-dish" based on dissociated primary neuronal cells from neonatal rat hippocampus. We demonstrate how a single application of glutamate stimulated neurons to generate spontaneous synchronous spiking activity with further progression into spontaneous seizure-like events after a distinct latency period. By computational analysis, we compared the observed neuronal activity in vitro with intracranial electroencephalography (EEG) data recorded from epilepsy patients and identified strong similarities, including a related sequence of events with defined onset, progression, and termination. Next, a link between the neurophysiological changes with network composition and cellular structure down to molecular changes was established. Temporal development of epileptiform network activity correlated with increased neurite outgrowth and altered branching, increased ratio of glutamatergic over GABAergic synapses, and loss of calbindin-positive interneurons, as well as genome-wide alterations in DNA methylation. Differentially methylated genes were engaged in various cellular activities related to cellular structure, intracellular signaling, and regulation of gene expression. Our data provide evidence that a single short-term excess of glutamate is sufficient to induce a cascade of events covering different scales from molecule- to network-level, all of which jointly contribute to seizure development.


Assuntos
Encéfalo/patologia , Epilepsia/patologia , Modelos Biológicos , Neurônios/patologia , Animais , Calbindinas/metabolismo , Cálcio/metabolismo , Células Cultivadas , Metilação de DNA/genética , Epigênese Genética , Epilepsia/genética , Neurônios GABAérgicos/patologia , Redes Reguladoras de Genes , Neurônios/metabolismo , Análise de Componente Principal , Ratos , Fatores de Tempo
2.
Front Mol Neurosci ; 9: 99, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812320

RESUMO

The ubiquitous metabolic intermediary and nucleoside adenosine is a "master regulator" in all living systems. Under baseline conditions adenosine kinase (ADK) is the primary enzyme for the metabolic clearance of adenosine. By regulating the availability of adenosine, ADK is a critical upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. ADK protein exists in the two isoforms nuclear ADK-L, and cytoplasmic ADK-S, which are subject to dynamic expression changes during brain development and in response to brain injury; however, gene expression changes of the Adk gene as well as regulatory mechanisms that direct the cell-type and isoform specific expression of ADK have never been investigated. Here we analyzed potential gene regulatory mechanisms that may influence Adk expression including DNA promoter methylation, histone modifications and transcription factor binding. Our data suggest binding of transcription factor SP1 to the Adk promoter influences the regulation of Adk expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...